Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data.

نویسندگان

  • Lawrence P Petalidis
  • Anastasis Oulas
  • Magnus Backlund
  • Matthew T Wayland
  • Lu Liu
  • Karen Plant
  • Lisa Happerfield
  • Tom C Freeman
  • Panayiota Poirazi
  • V Peter Collins
چکیده

Histopathologic grading of astrocytic tumors based on current WHO criteria offers a valuable but simplified representation of oncologic reality and is often insufficient to predict clinical outcome. In this study, we report a new astrocytic tumor microarray gene expression data set (n = 65). We have used a simple artificial neural network algorithm to address grading of human astrocytic tumors, derive specific transcriptional signatures from histopathologic subtypes of astrocytic tumors, and asses whether these molecular signatures define survival prognostic subclasses. Fifty-nine classifier genes were identified and found to fall within three distinct functional classes, that is, angiogenesis, cell differentiation, and lower-grade astrocytic tumor discrimination. These gene classes were found to characterize three molecular tumor subtypes denoted ANGIO, INTER, and LOWER. Grading of samples using these subtypes agreed with prior histopathologic grading for both our data set (96.15%) and an independent data set. Six tumors were particularly challenging to diagnose histopathologically. We present an artificial neural network grading for these samples and offer an evidence-based interpretation of grading results using clinical metadata to substantiate findings. The prognostic value of the three identified tumor subtypes was found to outperform histopathologic grading as well as tumor subtypes reported in other studies, indicating a high survival prognostic potential for the 59 gene classifiers. Finally, 11 gene classifiers that differentiate between primary and secondary glioblastomas were also identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Immunohistochemical Study of Cyclin D1 Expression in Astrocytic Tumors and its Correlation with Tumor Grade

Background & Objective: Glioblastoma-multiforme is the high grade form of astrocytic tumors with a short survival time, which are the most common type of brain tumors. Therefore, finding new therapeutic options is essential. Cyclin D1 is expressed in some human malignancies and can be a potential target for therapeutic intervention. The aim of the present study was to determine...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Comparison of Artificial Neural Network and Regression Models for Prediction of Body Weight in Raini Cashmere Goat

The artificial neural networks (ANN) are the learning algorithms and mathematical models, which mimic the information processing ability of human brain and can be used to non linear and complex data. The aim of this study was to compare artificial neural network and regression models for prediction of body weight in Raini Cashmere goat. The data of 1389 goats for body weight, height at withers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2008